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Abstract: The zinca-ene-allene reaction allows a new diastereoselective and straightforward alternative to the angular
and linear triquinane framework synthesis.

Linear and angular tricyclopentanoid skeletons constitute an important class of natural product
structurel. Although numerous pathways for the synthesis of triquinane frameworks were described in the
literature2, the need for diastereoselective and convergent synthesis is still a challenge.

Recently, we have described a new carbocycle synthesis via an intramolecular zinca-ene-allene reaction? as
described in Scheme 1.
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This cyclisation is stereoselective and a single diastereoisomer is formed, even when a tertiary and a quaternary
center are linked in the process. Moreover, the zinca-ene-allene carbocyclisation has been successfully applied
to the diastereoselective synthesis of polysubstituted tctrahydrofurans4 and substituted exomethylene-
cyclopentancsS. In order to extend the scope of this reaction, we report in this letter that this methodology can
also be applied to the diastereoselective synthesis of either linear or angular tricyclopentanoids starting from the
same precursor.

8-(Trimethylsilyl)-1-octen-7-yne 1 was cleanly metalated with sBuLi in THF at -45°C5 followed by the
addition of 1 equiv of zinc salt” to lead to the corresponding allenyl zinc bromide intermediate8. After warming
the solution to room temperature, this organometallic cyclizes in less than 5 min. to give the cyclic organozinc
bromide 2. This latter can be functionnalized by a coupling reaction? with 1-iodo ethene in the presence of a
catalytic amount of Pd(PPh3)4 or by the reaction with allyl bromide after transmetalation of 2 into an

organocopper x’eagemlo. In both cases, the cyclic products 3 and 4 were isolated as single isomers.
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Enyne 3 was treated with a "ZrCp2" reagent generated in situ by the reaction of Cp2ZrCl2 with 2 equiv of
nBuLill and, without isolation, the zirconatricyclic product was subjected to the carbonylation reaction. The
tricyclic ketone §, isolated as a pure material in 50% yield, is obtained as single diastereoisomer (Scheme 2).
Surprisingly, when the same reaction was performed at lower concentration (0.1 instead of 0.5 mol.I1) the
diastereoselectivity decreases to 83/17. The stereochemical assignment of § is based on Nuclear Overhauser
effects, which point to a cis - anti- cis tricyclopentanoid framework characteristic of several natural linear
triquinanes, which is thus obtained in 2 steps from the enyne 1.
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The same methodology can also be applied from a o, x-disubstituted enyne to give, in a two steps procedure
from the acyclic enyne 6, the methyl substituted linear tricyclic enone as a single diastereoisomer.
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Starting from the enyne 4 (Scheme 2), synthetized from the enyne 1 in 72% yield, and submitting it to the
zinca-ene-allene experimental condition3 (metalation - transmetalation - cyclization) the corresponding
bicycloorganozinc bromide was, at first, obtained. The latter was treated with vinyl iodide in the presence of a
catalytic amount of Pd(Ph3)4? to give the bicyclo enyne 7 in 68% yield as a single diastereoisomer. Treatment
of 7 by the Negishi's reagent]! followed by an acidic hydrolysis leads to 8 which can be directly submitted to
the desilylation procedurel2. Under these conditions, the exomethylene double bond migrates to form the
thermodynamically stable olefin 9 a pattern also found in natural triquinanes. So, starting from a linear enyne
1, the angular skeleton of triquinane can be easily elaborated, leading to a single diastereoisomer in 4 steps via
two zinca-ene-allene reactions, followed by the zirconium cyclization reaction and an acidic desilylation
treatment.

In conclusion, the zinca-ene-allene reaction allows a new diastereoselective and straightforward alternative to
the angular and linear triquinane framework synthesis. Specific examples of natural triquinanes syntheses will
be described in a forthcoming full paper.
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